

Section 12: PIMS International Space Station Operations

Kevin M. McPherson
PIMS Data Analyst
NASA Glenn Research Center

PIMS Functions During Experiment Life Cycle

Components of the Microgravity Environment

Space Acceleration Measurement System-II

- Provide distributed measurement of the vibratory and transient acceleration environment (0.01 ≤ f ≤ 300 Hz) on the ISS in support of various microgravity payloads
- Components
 - Control Unit
 - Responsible for data and command routing
 - Remote Triaxial Sensor (RTS) System
 - Up to Ten RTS Electronics Enclosures (EE's)
 - Up to Two RTS Sensor Enclosures (SE's) per EE
- Flight 6A configuration and operations
 - Three EE's and 5 SE's
 - Real-time data downlinked from the ISS

Microgravity Acceleration Measurement System

- Measure the ISS quasi-steady acceleration (f ≤ 0.01 Hz) and the ISS vibratory acceleration environment
- Components
 - Miniature Electro-Static Accelerometer (MESA)
 - sensor is a flight spare from the OARE program
 - measure the quasi-steady acceleration environment
 - High-Resolution Accelerometer Package (HiRAP)
 - measure the vibratory environment at the MAMS location only
- Flight 6A configuration
 - MESA and HiRAP instruments active
 - Real-time data downlink from the ISS
- Additional features
 - Quasi-steady acceleration data can be mapped to various locations within the ISS using ISS body rates and body angles
 - Provides on orbit bias calibration capabilities

Operational Philosophy

- Operations are divided into three sections:
 - 1) Real-time operations
 - 2) Near real-time operations
 - 3) Offline operations
 - general characterization and specialized analyses
- Acceleration measurement using SAMS-II and MAMS planned for the duration of ISS operations beginning with Flight 6A operations
- Potential for nearly continuous operations to characterize the environment
 - includes measurement of the environment, where possible, outside of "microgravity mode"
- AOS/LOS profiles call for 30 60 percent AOS coverage
 - requires the ability to deal with AOS and LOS data streams

Operational Philosophy

- Flight 6A operational configuration calls for 5 SAMS-II
 Sensor Enclosures (SE), MAMS MESA, and MAMS HiRAP
 - not all sensors will be active all the time resulting in a variety of acceleration measurement profiles
- PIMS has developed a core set of techniques for processing and displaying the acceleration data
 - Based on real-time and offline experience gained from SAMS and OARE data during Space Shuttle and Mir operations
 - Customized processing or displays as required by the microgravity user community
- Microgravity acceleration data will be available to Principal Investigators
 - Working with international partners on establishing a universal file format standard for acceleration data

PIMS Data Analysis Techniques

Display Format	Regime(s)	Notes
Acceleration versus Time	Transient, Quasi-Steady, Vibratory	• precise accounting of measured data with respect to time; best temporal resolution
Interval Min/Max Acceleration versus Time	Vibratory, Quasi-Steady	• displays upper and lower bounds of peak-to-peak excursions of measured data
		 good display approximation for time histories on output devices with resolution insufficient to display all data in time frame of interest
Interval Average Acceleration versus Time	Vibratory, Quasi-Steady	• provides a measure of net acceleration of duration greater than or equal to interval parameter
Interval RMS Acceleration versus Time	Vibratory	 provides a measure of peak amplitude for pure sinusoids
Trimmed Mean Filtered Acceleration versus Time	Quasi-Steady	removes infrequent, large amplitude outlier data
Quasi-Steady Mapped Acceleration versus Time	Quasi-Steady	• use rigid body assumption and vehicle rates and angles to compute acceleration at any point in the vehicle
Quasi-Steady Three-Dimensional Histogram (QTH)	Quasi-Steady	• summarize acceleration magnitude and direction for a long period of time
		• indication of acceleration "center-of-time" via projections onto three orthogonal planes

PIMS Data Analysis Techniques

Display Format	Regime(s)	Notes
Power Spectral Density (PSD) versus Frequency	Vibratory	displays distribution of power with respect to frequency
Spectrogram (PSD versus Frequency versus Time)	Vibratory	 displays power spectral density variations with time identify structure and boundaries in time and frequency
Cumulative RMS Acceleration versus Frequency	Vibratory	• quantifies RMS contribution at and below a given frequency
Frequency Band(s) RMS Acceleration versus Time	Vibratory	 quantify RMS contribution over selected frequency band(s) as a function of time
RMS Acceleration versus One-Third Frequency Bands	Vibratory	 quantify RMS contribution over proportional frequency bands compare measured data to ISS vibratory requirements
Principal Component Spectral Analysis (PCSA)	Vibratory	 summarize magnitude and frequency excursions for key spectral contributors over a long period of time results typically have finer frequency resolution and high PSD magnitude resolution relative to a spectrogram at the expense of poor temporal resolution

Real-Time Operations

- Crux of real-time operations involves receiving, processing, and displaying microgravity acceleration data via the WWW
- Acceleration data displays via the WWW
 - PIMS displays are updated in real-time
 - Electronics snapshots are routed to the PIMS WWW page
 - Interested Principal Investigators can view the environment by accessing the PIMS WWW page
- Example real-time plots
 - Figure 12-1 USMP-4 (STS-87) IDGE Experiment Turn Off
 - Figure 12-2 USMP-4 (STS-87) Cabin De-Pressurization for EVA
 - Figure 12-3 LMS (STS-78) Nominal Microgravity Environment

PIMS ISS Acceleration Data Flow

Near Real-Time Operations

- Two primary functions performed
 - Merge AOS and LOS data streams
 - Generate processed (t,x,y,z) data files
 - store the data in a universal storage format
- Universal file format standard details
 - Develop a standard file format for ISS acceleration data from any ISS acceleration measurement system
 - Simplify access to acceleration data for Principal Investigators
 - Store ancillary data with acceleration data in a single file
 - ancillary data describes the conditions and circumstances under which the acceleration data were obtained
 - current ancillary data parameters include: t-zero, t-end, sampling rate, cutoff frequency, head ID, gain, ISS CM, station configuration, location, orientation, coordinate system, bias coefficients, scale factor, and Data Quality Measure (DQM)

Offline Operations

- Primary function is to allow access to acceleration data for non-time-critical processing
 - In general, allows a more detailed analysis of the measured microgravity environment
 - Capable of processing and analyzing a long period of data
 - Overall access to acceleration data greatly simplified by a universal storage format
- PIMS WWW page offline functions
 - Provide the capability to request plotted data or data files
 - Provide the capability for submitting an electronic request for data processing
 - Provide means for anonymous FTP access to the processed acceleration data files

Offline Operations

- Example Near Real-time Plots
 - Figure 12-4 MSL-1 (STS-94) SOFBALL Radiometry Data
- Example Offline Plots
 - Figure 12-5 LMS (STS-78) Principal Component Spectral Analysis

Summary

- PIMS will receive, process, and store acceleration data for SAMS-II and MAMS data starting with flight 6A operations
- A universal storage format will be employed for data storage
 - simplify access to acceleration data
 - standardize formats for data storage to maximize access to all existing acceleration data by international partners
- Real-time data plots of the various available accelerometers will be available via the PIMS WWW page
- Offline access to plotted data and analysis capabilities available through PIMS and the PIMS WWW page
- General and specialized characterization of the ISS microgravity environment

MEIT 1999 Figure 12-1: IDGE Experiment Turn Off from STS-87 Mission (USMP-4)

MEIT 1999 Figure 12-3: Nominal Microgravity Environment from STS-78 (LMS)

MEIT 1999 Figure 12-4: Raw OARE Data and SOFBALL Radiometry Data from STS-94 Mission (MSL-1R)

MEIT 1999 Figure 12-5: Principal Componet Spectral Analysis for the Entire STS-78 Mission (LMS)